Spline Collocation for system of Fredholm and Volterra integro-differential equations

نویسندگان

  • Jalil Rashidinia Department of Mathematics, Islamic Azad University, Central Tehran Branch, Iran
  • Nehzat Ebrahimi Department of Mathematics, Islamic Azad University, Central Tehran Branch, Iran
چکیده مقاله:

The spline collocation method  is employed to solve a system of linear and nonlinear Fredholm and Volterra integro-differential equations. The solutions are collocated by cubic B-spline and the integrand is approximated by the Newton-Cotes formula. We obtain the unique solution for linear and nonlinear system $(nN+3n)times(nN+3n)$ of integro-differential equations. This approximation reduces the system of integro-differential equations to an explicit system of algebraic equations. At the end, some examples are presented to illustrate the ability and simplicity of the method.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SPLINE COLLOCATION FOR FREDHOLM AND VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS

A collocation procedure is developed for the linear and nonlinear Fredholm and Volterraintegro-differential equations, using the globally defined B-spline and auxiliary basis functions.The solutionis collocated by cubic B-spline and the integrand is approximated by the Newton-Cotes formula.The error analysis of proposed numerical method is studied theoretically. Numerical results are given toil...

متن کامل

Spline Collocation for Fredholm and Volterra Integro - Differential Equations

A collocation procedure is developed for the linear and nonlinear Fredholm and Volterra integro-differential equations, using the globally defined B-spline and auxiliary basis functions.The solution is collocated by cubic B-spline and the integrand is approximated by the Newton-Cotes formula. The error analysis of proposed numerical method is studied theoretically. Numerical results are given t...

متن کامل

spline collocation for system of fredholm and volterra integro-differential equations

the spline collocation method  is employed to solve a system of linear and nonlinear fredholm and volterra integro-differential equations. the solutions are collocated by cubic b-spline and the integrand is approximated by the newton-cotes formula. we obtain the unique solution for linear and nonlinear system $(nn+3n)times(nn+3n)$ of integro-differential equations. this approximation reduces th...

متن کامل

Discrete Collocation Method for Solving Fredholm–Volterra Integro–Differential Equations

In this article we use discrete collocation method for solving Fredholm–Volterra integro– differential equations, because these kinds of integral equations are used in applied sciences and engineering such as models of epidemic diffusion, population dynamics, reaction–diffusion in small cells. Also the above integral equations with convolution kernel will be solved by discrete collocation metho...

متن کامل

SPLINE COLLOCATION FOR NONLINEAR FREDHOLM INTEGRAL EQUATIONS

The collocation method based on cubic B-spline, is developed to approximate the solution of second kind nonlinear Fredholm integral equations. First of all, we collocate the solution by B-spline collocation method then the Newton-Cotes formula use to approximate the integrand. Convergence analysis has been investigated and proved that the quadrature rule is third order convergent. The presented...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 3  شماره 2

صفحات  189- 218

تاریخ انتشار 2016-03-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023